Run-and-tumble particles in speckle fields.
نویسندگان
چکیده
The random energy landscapes developed by speckle fields can be used to confine and manipulate a large number of micro-particles with a single laser beam. By means of molecular dynamics simulations, we investigate the static and dynamic properties of an active suspension of swimming bacteria embedded into speckle patterns. Looking at the correlation of the density fluctuations and the equilibrium density profiles, we observe a crossover phenomenon when the forces exerted by the speckles are equal to the bacteria's propulsion.
منابع مشابه
First-passage time of run-and-tumble particles.
We solve the problem of first-passage time for run-and-tumble particles in one dimension. Exact expression is derived for the mean first-passage time in the general case, considering external force fields and chemotactic fields, giving rise to space-dependent swim speed and tumble rate. Agreement between theoretical formulae and numerical simulations is obtained in the analyzed case studies --c...
متن کاملRun-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming.
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the...
متن کاملEffect of reorientation statistics on torque response of self-propelled particles.
We consider the dynamics of self-propelled particles subject to external torques. Two models for the reorientation of self-propulsion are considered: run-and-tumble particles and active Brownian particles. Using the standard tools of nonequilibrium statistical mechanics we show that the run and tumble particles have a more robust response to torques. This macroscopic signature of the underlying...
متن کاملStatistical mechanics of interacting run-and-tumble bacteria.
We consider self-propelled particles undergoing run-and-tumble dynamics (as exhibited by E. coli) in one dimension. Building on previous analyses at drift-diffusion level for the one-particle density, we add both interactions and noise, enabling discussion of domain formation by "self-trapping," and other collective phenomena. Mapping onto detailed-balance systems is possible in certain cases.
متن کاملLattice Models of Nonequilibrium Bacterial Dynamics
We study a model of self propelled particles exhibiting run-and-tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of bacteria such as E. coli. By defining a class of models with multiple species of particle and transmutation between species we can recreate such dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 26 37 شماره
صفحات -
تاریخ انتشار 2014